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This paper establishes that because of the possibility of drift wave pro- 
pagation in the plasma in the presence of an inhomogeneity across the magnetic 
field, as the time goes on, the inclination of these waves' leading front becomes 
steeper and steeperby comparison with theinitial state, so long as the mean wave 
frequency does not become so high that it becomes indispensable to take into 
account the inertia of ions across the magnetic field. Then the wave assumes a 
stationary state provided the amplitude is not too great. 
strong plasma turbulization in the presence of instability relative to low-fre- 
quency drift waves, inasmuch as the correlation between oscillations in any two 
points of the plasma weakens considerably as the amplitude of oscillations rises. 

This may lead to 

* 
* * 

It has been established in [l, 21 that in the presence of an inhomogeneity 
in a plasma, transverse relative to the magnetic field, the propapation of drift 
waves is possible. 

Assuming the plasma system at rest, let us direct the axis along the ma- 
For the 
When 

gnetic field and the axis x along the gradient of particle density. 
sake of simplicity we postulate that the temperature of ions is zero. 
plasma pressuri: is low, the fluctuation of the electric field may be considered 
as potential, and for a low frequency of oscillations the hydrodynamic velocity 
of ions across the magnetic field has a drift character: 

where 5 is the vector of the ion-cyclotron frequency and (I is the electric po- 
tential. 

* 0 N E L I N E Y "  DREYFOVYKH V O L "  V PLAZME. 



2.  

Taking into account that the divergence from (1) is zero, we shall write 
the continuity equation for ions in the form 

Considering the plasma as quasi-neutral, we may substitute in (2) the den- 
sity of electrons in place of that of ions, ni. For a large magnetic field 
the components of the hydrodynamic velocity of electrons across the magnetic 
field may be considered as zero, and the distribution of electron density ne 
as a function of potential4may be taken as Boltzmann's : 

= I Z ~  (5) CZ!I { C C ~  i I ' } ,  (3) 

where no(x) is the mean density and T is the temperature of electrons. 
stituting (3) into ( 2 ) ,  we shall obtain, taking into account (1): 

Sub- 

The velocity of ions along 4 satisfies the equation 

Considering the drift velocity r+, as constant, which is correct when the 
wavelength across the magnetic field is much less than the characteristic di- 
mension of plasma inhomogeneity, we shall seek the solution of the system (4), 
(5) in the form of a simple unidimensional Reeman wave [ 3 ] ,  i. e., we postulate 

Substituting (6) into (4), ( S ) ,  we shall obtain, taking into account (1): 

a t  / a t  + (/iLuzp + X' ,C,  -t ~ , C S ' ~ L ' Z  / a + )  / a; 0; (7) 

Dividing ( 7 ) ,  (8) by a g j i i g  and denoting 
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From (10) and (11) we eliminate d c , / a q  and obtain 

where onp is the frequency of linear drift oscillations with wave vector 2 

Substituting (9) into (12) and integrating, we obtain 

E = Jir = o,t + X.,u;t + f(u,), (14) 

where Lis an arbitrary function giving the distribution of ion velocity a t  
the moment of time t = 0. 
wave was sinusoidal with amplitude vo , we would have 
expression (14) defines implicitly vz as a function of time and coordinates. 
Eliminating V from (lo), (ll), and integrating, we find that $is proportional 
to vz. 

For example, if at the initial moment of time the 
f = arc sin ( r z  / coi. The 

Let us examine how the solution (14) behaves with time. It follows from 
(12) that at the Tiven point V the phase velocity of the wave is not constant 
and depends on vz. 
and catches the regions where vz is small. The nonidentity of the shift velo- 
city of points of wave's profile leads to the variation of its shape with time 
[3] . 
time i -' 1 /!:J~ function v,(t. E )  does nct become discontinuous with respect t-o 
both variables, passing into a shock wave. 
portional to the derivative from $, and $, as already noted, is proportional 
to vz . 
rapidly than vz. 

At those points, where vz is greater, the wave moves faster 

The leading wave front becomes steeper and steeper, so long as for the 

As may be seen from (1) v1 is pro- 

This is why v,(t, 5) approaches the discontinuous function much more 

In reality, the shock wave is not forming on account of the following 
If the temperature of ions is sufficiently high, the rate of wave energy causes. 

absorption increases as the steepness of the wave front rises because of ion 
viscosity and Landau damping on ions. As a result the wave will be absorbed 
prior to formation of discontinuity. But if the temperature of ions is low, 
the mean wavels time 
steepness increase that the accounting of ion inertia becomes indispensable. 

frequency may become so great on account of wave front's 

We shall demonstrate that at frequencies, when the inertia of ions cannot 
be neglected and at least at small oscillation amplitudes, the existance of a 
stationary periodic wave in an inhomogenous plasma is possible. We derive there- 
from the conclusion that in the course of time the drift wave transforms into 
such a wave or a superimposition of such waves. 

The inertial motion of ions will be taken into account only in the first 
nonvanishing approximation [l]. Then instead of (1) we shall have 
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and from the continuity equation and (3), ( I S ) ,  instead of ( 3 )  we shall have 

Since the inertia of ions is taken into account only in oscillation ampli- 
tude-wise tern, we may substitute into (16) the expression [see (l), ( S ) ,  (6)] 

We shall seek the solution of the system (16), (17) in the form of a sta- 
tionary wave, that is, we postulate 

Then from (16), (17) 

For greatw(19) has periodical solutions, for then it is the equation of 
a nonlinear oscillator. 
small parameter .Q-* and the second derivative from vz, the drift oscillations 
have no stationary oscillating solutions (in accord with (14)). 
from (14), the derivatives with respect to time and coordinates from v rise 
and the first term of (19) becomes material. Then, the subsequent drift wave 
"changeover" ceases and the drift wave transforms into a superimposition of 
periodical solutions of (19). 
quasistationary wave described by Eqs.(l6), (17). 

We see that without the first term, containing the 

As follows 

The superposition of periodic waves gives the 
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